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Abstract—Brain-Computer Interfaces (BCI) that rely upon
epidural electrocorticographic signals may become a promising
tool for neurorehabilitation of patients with severe hemiparatic
syndromes due to cerebrovascular, traumatic or tumor-related
brain damage. Here, we show in a patient-based feasibility
study that online classification of arm movement intention is
possible. The intention to move or to rest can be identified
with high accuracy (∼90%), which is sufficient for BCI-
guided neurorehabilitation. The observed spatial distribution
of relevant features on the motor cortex indicates that cortical
reorganization has been induced by the brain lesion. Low-
and high-frequency components of the electrocorticographic
power spectrum provide complementary information towards
classification of arm movement intention.

I. INTRODUCTION

Brain impairment is one of the largest health-related,

socio-economic burdens. In particular, stroke is the most fre-

quent cause of long-term motor disability among adults [1].

Patients with severe motor impairment are not sufficiently

addressed by current rehabilitation methods. Significant

functional recovery after one year is rare – despite novel

interventional approaches for application in the chronic

stage such as bilateral arm training or constraint-induced

movement therapy [1].

Electrocorticographic (ECoG) based Brain-Computer In-

terfaces (BCI) [2] in combination with robot-assisted therapy

may provide an alternative approach to neurorehabilitation,

particularly for patients with severe motor deficits. We

assume that a brain signal-based haptic reinforcement of a

patient’s intent to move the arm with the support of a robot

arm may induce cortical plasticity and functional improve-

ment of the paretic arm. Here, Hebbian rule-based learning

is the presumed underlying biological mechanism [3], [4]. A

key step in realizing such a scenario is the online decoding

of the patient’s intent to move the impaired arm. In this

paper, we investigate the feasibility of this approach using

epidural ECoG in a stroke patient, a safer alternative to

intraparenchymal electrodes or subdural devices for BCI

applications [5].

In primates, spike signals recorded from the motor cortex

have been shown to provide information about position or

velocity of real arm movements [6]. Off-line reconstruction

of 2-D real arm movement trajectories has been posible

using the firing rates of several neurons [7]. There is

evidence that intracortical local field potentials (LFPs) in

primates or fields potentials measured directly from the

brain surface (subdural ECoG) may also be used in humans

for decoding substantial information on the patient’s arm

movements [2], [8]. Off-line reconstruction of 2-D real

arm movement trajectories of epileptic human subjects has

proven possible [9].

Motor imagery has been employed to control the 1-D or

2-D trajectory of a device (e.g., the cursor on a screen).

However, in most cases, the system relies on combinations

of imagined movement for different parts of the body or

extensive training of the patient who learns how to modulate

different frequency bands: Subdural ECoG features recorded

from several locations over the same hemisphere in epileptic

subjects have been used in a two-dimensional four-target

center-out task [10]. A linear combination of EEG left and

right hand imagery features recorded from healthy subjects

has been used to perform a two-dimensional center-out task

with eight targets [11]. The modulation of µ-rhythm gen-

erated magnetoencephalography (MEG) features recorded

from stroke patients has been used to control a 1-D cursor

with an accurate direction classification of (65%-90%) [1].

In our scenario, real movement decoding is not possible

due to the paralysis caused by the brain lesion. Using fea-

tures resulting from different types of imagined movements

(tongue, arm, etc.) as control signals in a robot-assisted

therapy in stroke patients is not reasonable when aiming at

the restoration of the impaired arm. Instead, we are aiming

at decoding movement intention that mimicks the desired

motor trajectory of the affected arm and may, thereby, be

useful in robot-assisted training of hemiparetic patients.

To the best of our knowledge, this is the first BCI ap-

plication using epidural ECoG in a stroke patient, studying

prospective neuromotor rehabilitation. This study employs

online classification of arm movement intention over a fixed

trajectory using epidural ECoG signals. We show how low-

frequency (2-40 Hz) and high-frequency (40-80 Hz) power

spectral densities provide complementary information that

can be combined to improve the classification accuracy.

A comparison among power spectral densities in different

spatial locations over the motor cortex provides evidence of

cortical reorganization caused by the brain lesion.



II. MATERIALS AND METHODS

Human subject. The subject was a 65-year old male with

a right-sided chronic hemiparesis following a hemorrhagic

stroke in the left thalamus. Electrode grid implantation was

performed within a treatment protocol for intractable pain

and was determined solely by clinical criteria.

Figure 1. Sub-
ject’s task

Tasks. The subject’s task consisted of trying

to move his paretic forearm forward or back-

ward, using his elbow as the single degree of

freedom during the movement (Figure 1). In

order to facilitate the movement, the forearm

was lying laterally on a small platform. As

this task consists of a forward movement

followed by a backward movement, it mimics

a pointing movement with the forearm and

it is an essential component of a grasping

movement. The subject was not capable of

performing this movement appropriately, thereby resulting

in a movement intention rather than the movement itself. In

each block, there were 15 visual and auditory cues (”Move

forward”, ”Move backward”) for each movement direction

and 30 visual and auditory cues (”Relax”) for rest, delivered

as a text at a distance of 1.5m from the subject, alternating

between 5s movement periods and 3s rest periods. In each

block, online visual feedback was provided after an initial

training period consisting of 15 seconds for each condition.

Here, an arrow moved forward, backward or stopped every

300 ms based on the online decoding of the ECoG signal.

More detail will be provided in Section III. Cues of both

types of movement directions were interleaved randomly in

a way that the movement direction could not be inferred a

priori. The subject’s movement intent was always cued for

the arm contralateral to the side of the brain lesion and the

cortical grid.

Figure 2. MRI
of the subject’s brain
with an overlay x-ray
of the electrode grid.

Recording. The platinum electrode a-

rray (by Ad-Tech, Corp.) consisted of

96 electrodes, configured as a 8 ×

12-electrode grid. The electrode pads

had 4-mm diameter (2.3 mm exposed)

and 5-mm interelectrode distance. The

electrode array covered parts of the

premotor cortex, primary motor cortex

and somatosensory cortex, as shown

in Figure 2. The electrode with index

1 corresponds to the top right corner,

and indices increase in columns from

top to bottom and right to left. Electrode 89 (top left

corner, in yellow) was used as reference. ECoG signals were

fed into a stack of BrainAmp (by Brain Products GmbH)

amplifiers in the first session and into a Quickamp (by Brain

Products GmbH) amplifier in the second session, both with a

250Hz sampling rate. ECoG signals were acquired from the

amplifiers using the general-purpose BCI2000 software [12],

and the additional module BCPy2000 [13] was used for

online signal processing and statistical learning.

Signal Analysis. Initially, common average reference

(CAR), band pass filtering (2-115 Hz), and notch filtering

(50 Hz power line) were carried out over the raw signals.

Normalized average power spectral densities in 2 Hz fre-

quency bins for each electrode were used as features, as

previously used in motor imagery and for real movement

decoding [9], [10]. Welch’s method was used to compute

an estimation of the power spectral density (PSD). During

the experiment, the estimation was computed on-line over

incrementally overlapping bigger time segments during each

5s movement or 3s resting periods. Larger segments pro-

vide less noise and more reliable estimates while smaller

time segments are necessary to enable online classification

already at the beginning of every trial.

Online decoding. Online classification was carried out

between movement and resting, providing online feedback.

A linear support vector machine (SVM) classifier [14] is

generated on-line after a short initial training period in which

spectral estimates for 15 seconds of each condition (both

movement directions and rest) are computed. In addition, the

parameters of a sigmoid function to map the SVM outputs

into probabilities are also estimated.

III. RESULTS

Spatial and Spectral Features. To gain more insight into

the discriminative power of every feature, the area under the

receiver operating characteristic curve (AUC) [15] is com-

puted for both pairs of conditions (move forward vs rest and

move backward vs rest) for every feature, i.e. electrode and

frequency bin. Figure 3(a) shows the AUC values for every

feature when comparing move backward vs rest (a similar

figure was obtained when comparing move forward vs rest

and it is omitted). Areas with values closer to zero (shown in

blue) and values closer to one (shown in red) correspond to a

decrease and increase in spectral power, respectively, when

carrying out the movement. Similar to preceding subdural

ECoG studies [16], also in our data there is a spectral power

decrease in the low-band frequency regime and a spectral

power increase for high-band frequencies during movement.

In low-band frequencies, we did not find a significant µ

rhythm (9-13 Hz) desynchronization. Instead, we observed a

strong β rhythm (18-24 Hz) desynchronization. This finding

might be related to different factors most likely due to the

underlying pathology.

Moreover, we integrate the values in Figure 3(a) over a

low-frequency band (2-40 Hz) and a high-frequency band

(40-80 Hz) and we map them to their spatial locations, as

shown in Figures 3(c) and 3(d), where light blue and red

colors indicate greater statistical significance. This provides

evidence of cortical reorganization caused by the brain
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Figure 3. Discriminative power of the features: (a) AUC and (b) classifier
weights per electrode and frequency bin, (c) average AUC per electrode for
low-frequency band and (d) average AUC per electrode for high frequency
band for moving backward vs resting. A similar figure was obtained when
comparing move forward vs rest and it is omitted. Refer to Fig. 2 for the
subject’s brain with an overlay x-ray of the electrode grid.

lesion. The most active areas during movement intention

of the arm do not entirely match the expected somatotopic

representation within the motor cortex.

Most of the discriminative power lies in electrodes cov-

ering the motor and somatosensory cortex, and thus we

used the first (in terms of index) 35 electrodes for online

classification. Interestingly, when focussing on the average

classifier weights across blocks, it can be observed that

they mimic the results of the AUC. However, note that

no additional constraint in the classification problems was

added to bias the solutions towards these electrodes or

frequency bins. Hence, no screening session with manual

feature selection is needed. The average classifier weight

distribution for the case of moving backward vs resting is

presented in Figure 3(b).

Performance. We evaluate the performance achieved in

terms of classification accuracy with epidural ECoG for

two different online decoding schemes and for one off-line

decoding algorithm. In the first online decoding scheme,

overlapping segments between 500 ms and 5 seconds are

used in both the training set and the test set for every

block. None of the segments of the training set overlaps

with segments in the test set. In the second online decoding

scheme, 500ms non-overlapping segments are used in both

the training and the test set for every block. In the off-line

decoding algorithm, full trials are used in both the training

set and the test set. For every case and every block, samples

in the training set occurred earlier in time than the ones in

the test set. During the experiment with the patient (on-site),

online decoding with overlapping segments was used.

Figure 4 shows the average test accuracy and test range

accuracy across blocks when considering a low-frequency

band (2-40 Hz), a high-frequency band (40-80 Hz) and a

broadband (2-80 Hz). Two binary classification problems

were studied: move forward vs rest and move backward

vs rest for the three different decoding schemes. Using

confusion matrices, it was verified that the classification was

not skewed towards one class. Table I shows the confusion

matrices of both classifiers for the frequency band 2-80 Hz.

Both low-frequency (2-40 Hz) and high-frequency (40-80

Hz) bands seem useable for classification purposes. The best

results are achieved using the broadband that contains both

low-frequency and high-frequency components. This might

indicate that low-frequency and high-frequency components

provide complementary information.

Our results are comparable with previous off-line 2-class

classification accuracy, i.e., 95% for real movement and 80%

for imagined movement vs rest for epileptic patients who

were not compromised in their motor performance [16]. In

contrast, our patient had a hemiparetic arm and was not able

to perform the instructed movement. Importantly, we provide

on-line instead of off-line (full-trial based) classification.

Hence, we provide the first proof of concept that online BCI

control can be applied in hemiparetic patients.

Decoding of the direction of arm movement (move for-

ward vs move backward) was also attempted. Relatively

low performance (40-67%, with average values around 55-

60%) was achieved. This may be caused by inconsistencies

in the subject’s movement direction intention during some

trials, i.e. the patient mixed forward and backward directions

during a single trial. This occurred specially during the

second session. Thereby, for online decoding based on low-

frequency components, we attained an accuracy of 61.3%

during the first session but only chance level during the

second session. Hence, this prevents us from drawing further

conclusions.

IV. DISCUSSION

Our study forms a first step in exploring the feasibility

of epidural ECoG signals for creating BCI-based rehabilita-

tion devices for hemiparetic patients. These devices would

consist of a brain signal-based haptic reinforcement of a

patient’s intent to move the paretic arm with the support

of a robot arm. In this scenario, the robot arm control must

provide real-time haptic feedback in response to the patient’s

intent to move or stop and thus, online decoding of the brain

signals is necessary. We have shown that online classification

of arm movement intention of a stroke patient with epidural

ECoG is possible even in a hemiparetic patient. High accu-

racy (> 90%) was achieved when comparing movement with

respect to a resting condition, allowing an implementation
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Figure 4. Classification accuracy: The figure shows the average test
accuracy and test accuracy range across blocks for both binary classifiers
(forward vs rest and backward vs rest) and three frequency ranges (2-40,
40-80 and 2-80 Hz).

for rehabilitation purposes. Our study was carried out with-

out intensive training, requiring as little as 15 seconds of data

per class per run (i.e., training and test period), and it does

not rely on off-line analysis or computation. These results

support the feasibility of epidural ECoG as a viable and

safer alternative to intraparenchymal electrodes or subdural

devices for BCI applications [5], having a greater spatial

resolution and less amount of artifacts than EEG.

Power spectral analysis shows a surprising lack of signif-

icant µ rhythm (9-13 Hz) desynchronization and instead a

strong β rhythm (18-24 Hz) desynchronization, probably re-

lated to the underlying pathology. The analysis of AUC and

the classifier weights provides empirical evidences for cor-

tical reorganization caused by the brain lesion. In particular,

the somatotopic arm representation has been shifted within

the motor cortex. Our approach allows addressing different

feedback strategies with respect to individual reorganization

patterns for neurorehabilitation in future studies. A study

Classifier Actual Predicted

Backward vs rest (non overlap)

Rest Backward

Rest 0.8452 0.1548

Backward 0.0834 0.9166

Forward vs rest (non overlap)

Rest Forward

Rest 0.8948 0.1052

Forward 0.1094 0.8906

Backward vs rest (overlap)

Rest Backward

Rest 0.8257 0.1743

Backward 0.0721 0.9279

Forward vs rest (overlap)

Rest Forward

Rest 0.8890 0.1110

Forward 0.0911 0.9089

Backward vs rest (full trial)

Rest Backward

Rest 0.9322 0.0678

Backward 0.0576 0.9424

Forward vs rest (full trial)

Rest Forward

Rest 0.9597 0.0403

Forward 0.0990 0.9010

Table I
CONFUSION MATRICES FOR FREQUENCY BAND 2-80 HZ

with more stroke patients is under progress.
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